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The solution of problem on distribution of static pressure in the real gas stream 
along the pipe flow element is for the first time achieved. The solution is obtained 
on a basis of consideration of contact interaction of the real fluid - gas and liquid - 
stream with the pipe wall. Physically adequate and mathematically correct 
expressions for the static pressure distribution are obtained by means of use of 
three fundamental laws in fluid dynamics: Torricelli formula, Bernoulli equation 
and Weissbach-Darcy formula. General solution is obtained for the gas stream. 
Special case of the obtained general solution is derived for the liquid stream. 
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Nomenclature 

ܦ                                        − internal diameter of the flow element; 
    ݃ − gravity acceleration; 
ܪ    − general height of free fall; 

                                         ℎ௜ − height of running point at free fall; 
ܮ     − general metric length of the flow element; 

തܮ                                           − general caliber length of the flow element, L/D; 
     ݈ − metric length of stream from the outlet section  

                                                 of the flow element up to running point; 
,଴݌                                    ௛݌ − pressure at inlet and at outlet of the  

           flow element respectively; 
(݈)௦௧݌		                                  − static pressure along the fluid stream; 
                                      	 ௙ܸ௩ − a stream velocity, determined by weight flow;  

ߛ     − weight density of fluid;  
௜௡ߞ                                         − coefficient of local hydraulic resistance for inlet  

           into the flow element; 
௘௫ߞ                                        − coefficient of local hydraulic resistance for outlet  

           from the flow element; 
௟௢௖ߞ                                       − coefficient of local hydraulic resistance within  

           the limits of the flow element;	 
ߣ     − hydraulic friction – Darcy -- coefficient. 

 
Introduction 

Creation of physically substantial bases of fluid motion theory envisions overcoming a number 
of problems and solution of series of attendant questions. The problem of determination of 
distribution of the energy potential along the pipe flow element or system is one of fundamental 
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in this area. The essence of the problem lies in the fact to define the unitized mathematical 
expression, which wills physically adequate and technical exactly determine the distribution of 
energy potential, applied to the flow element or system, and one wills be equally fairly for gas 
and liquid streams. In applied sense, it means determination of the law of static pressure 
distribution along the pipe flow element or system. 
 
Approach 
For solution of the problem, the author utilized: 
- formula for free fall of solid bodies and liquid jets, determined in its preliminary kind by 
Torricelli -- Galilei (1643) and established in its final form by Borda – Du Buat (not later 1766); 
- formula for determination of friction losses at motion of real liquid stream in a straight pipe, 
established by Weissbach -- Darcy (1857), and also formula for determination of losses, bound 
mainly with local change of a form and a cross-section area of the flow element, system, and 
proposed by Weissbach (1865); 
- equation of the energy conservation (density of energy is more exact) for fluid stream in a pipe 
by Bernoulli principle (1738) in the form, that conform to the end of XIX century. 
The sufficiency of these conformities to natural laws for reaching the set object is determined by 
their features stated below. 
Torricelli – Galilei – Borda – Du Buat, TGBD, formula represent the historically first equation of 
the energy conservation for motion of a solid body and a fluid flow without a contact interaction. 
The path of development of the formula from its initial experimental form to its physically 
correct record has been required almost 150 years (Du Buat) and for usage it as equation of the 
energy conservation it has been required in addition almost 120 years. The formula has passed 
verification in general mechanics and then in a fluid mechanics, and it has been assumed as one 
of the fundamental in mechanics. 
Weissbach – Darcy formula represent the historically first modification of TGBD formula for 
real fluid flow with taking into account of a contact interaction of the flow with a pipe wall. The 
formula is also obtained on a base of experimental research, and one reflects an approach to a 
viewing of motion, pointed by Aristotle (328 B.C.) as the third problem of his “Mechanical 
problems”. Fundamentality of taking into account of a contact interaction, called simplistically 
as hydraulic friction, is affirmed not only Aristotle’s prevision, but also that the formula became 
an inalienable part of equation of the energy conservation for a fluid flow in a pipe.  
Weissbach formula is modification of Weissbach – Darcy formula, and one allows determining 
the different shape local resistances of a flow system to a fluid motion. 
Fundamental character of equation of the energy conservation for fluid motion in a flow element 
or system cannot, apparently, give rise to doubt and furthermore the equation is constructed by 
means of the above-mentioned laws. The energy conservation principle for a movement without 
a contact interaction and the energy consumption principle for a movement with a contact 
interaction is harmonic combined in the equation. The last reflects even more severe sense, 
connected with self-organizing of a fluid stream, ensuring minimum energy consumptions for its 
motion in the flow system. 
 
Solution 
So, TGBD formula may be written in the form 
 
                                                             ܸଶ (2݃)⁄ = 1)ܪ − ℎ ⁄ܪ ),                                               (1) 
 
where ℎ represents simultaneously part of not yet passed path by impinging body and part of 
residual potential energy, and ܪ represents simultaneously all path of falling and available initial 
value of potential energy. In such aspect, formula (1) allows determining a quantity of kinetic 
energy of the falling body depending on relative part of a passed path of falling. 
In its turn, Weissbach – Darcy formula in the form 
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(݈)௦௧݌                                              ≡ (݈)ℎߛ = ത(1ܮߣ − ݈ ⁄ܮ ߛ( ௙ܸ௪

ଶ (2݃) + ⁄௛݌                            (2) 
 
allows determining the size of static pressure in liquid stream along the pipe depending on 
intensity of a contact interaction of the stream with the pipe wall. The reference point of a 
current length of the stream starts from the pipe outlet section, just as the reference point of a 
current height of a fall in the TGBD formula starts from the end point of the fall. With taking 
into account of denotation(1 − ݈ ⁄ܮ ) =  ௟, Weissbach – Darcy formula assumes a compact formܭ
 
(݈)௦௧݌                                                  ≡ (݈)ℎߛ = ௟ܭതܮߣ ߛ ௙ܸ௪

ଶ (2݃)⁄ + ௛݌ .                                  (3) 
 
The equation of energy conservation for liquid flow in direct pipe of round cross-section, with 
taking into account of formula (3) and Weissbach formula for local resistances, becomes 
 
଴݌                                  = ௛݌ + ߛ ௙ܸ௩

ଶ (2݃) + ௟ܭതܮߣ) + ௜௡ߞ + ௘௫ߞ + ߛ(௟௢௖ߞ∑ ௙ܸ௩
ଶ (2݃)⁄ൗ .           (4) 

 
After determination ௙ܸ௩

ଶ  from equation (4) and substitution it in the formula (3), we receive 
 
(݈)௦௧݌                                   = ଴݌) − (௛݌ ௟ܭതܮߣ (1 + ௟ܭതܮߣ + ௜௡ߞ + ௘௫ߞ (௟௢௖ߞ∑+ + ⁄௛݌ .            (5) 
 
The expression (5) determines distribution of static pressure in the real compressible fluid –  
gas -- stream along the pipe. 
For the real incompressible fluid – liquid – stream, it is valid to write the expression (4) in the 
kind 
                              ௙ܸ௩

ଶ (݈) = ଴݌) − (௛݌ 2݃ 1)ߛ] + ௟ܭതܮߣ + ௜௡ߞ + ௘௫ߞ ⁄[(௟௢௖ߞ∑+ =  (6)        .ݐݏ݊݋ܿ
 
From equality (6), it is follows necessity to acceptܭ௟ = 1, executable by l = 0, what corresponds 
to the pipe outlet section. Therefore for liquid, the distribution 0f static pressure along the pipe 
has accordingly a kind 
(݈)௦௧݌                                      = ଴݌) − ௟ܭതܮߣ(௛݌ (1 + തܮߣ + ௜௡ߞ + ௘௫ߞ + (௟௢௖ߞ∑ + ⁄௛݌               (7) 
 
and testifies to linear change of static pressure along the liquid stream length in pipe according to  
a change of the fraction numerator in its right member. In contrast to this, expression (5) 
possesses the generality and one is applied to the gas flow in a pipe. Presence of a complex, 
varying along the pipe length0 < ௟ܭ < 1 both in numerator and in denominator of fraction in the 
right member of expression (5), specifies the nonlinear character of the static pressure change of 
a gas flow in a pipe. At the same time diminution of the static pressure in the gas flow in 
direction to the pipe outlet happens more and more intensive. Physically it means an increase of 
the gas flow velocity to the pipe outlet at its constant cross-section area and constant quantity of 
the hydraulic friction coefficient. Such differences of physical properties of gas from liquid as its 
high elastic – reversible – compressibility and high kinematic viscosity in combination with its 
low heat capacity stipulate consecutive transformation of a friction work to a heat, which one, in 
turn, stipulate consecutive increase of the gas flow velocity along the straight pipe of constant 
cross-section area. The common in distribution of static pressure along the pipe for liquid and 
gas is in that the initial and final quantities of its static pressure can be the same for these fluids. 
And a difference is in that, at the mentioned identity, the curve of static pressure of a gas flow 
between the points ݌௦௧(0) = (ܮ)௦௧݌ ଴ and݌ = ௛݌  is situated above a straight line of static 
pressure of a liquid flow.  
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In problem on free fall in gravity field, the velocity of a body is increased along the way of the 
fall under stationary value of gravity acceleration. In problem on the gas stream motion in a pipe, 
the flow velocity is increased under stationary value of intensity of a contact interaction of the 
gas stream with the pipe wall. Such acceleration of a gas stream is the frictional self-acceleration. 
 
Discussion of results 

The analogous object was pursued by H.A. Duxbury in his work [1]. The equation, derived by 
the author, contains the link of pressure drop along the pipe with the mass flow rate of fluid. The 
link is not immediate, because it requires introducing the discharge coefficient as the additional 
empirical factor, defined by means of experiment. Furthermore, the link of pressure drop with 
the mass flow rate is complicated by necessity of determination of the fluid density at the 
beginning and the end of stream as well as an average quantity in conditions of essential non-
linear nature of a change of the pressure drop along the pipe. The mentioned imperfections are a 
consequence of the physically inferior approach, based on balance of the forces, but not an 
equation of the energy conservation. Therefore the equation, derived in [1] for determining the 
pressure drop along the pipe length as many other attempts before him, not possess the attributes 
of the static pressure law for the pipe flow element. 

Congruence of results 
The obtained expressions (5) and (7) are used as a basis for elaboration of mathematical 
algorithm and then VeriGas program for computing the state and motion parameters of the gas 
stream in diverse of the flow elements and systems, formed by its. The results of computing are 
tested by means of comparison with experimental data of great number of sources of the 
specialized literature. In particular, the diagram, adduced in the book [2], shows experimental 
curves of static pressure in air stream along the 80-calibers pipe, named as smooth. The 
analogous curves were obtained by means of the adduced here formula (5). It was found, that 
experimental curves exceed the calculation ones approximately on 5%. Attentive consideration 
of the book diagram shows that about 20 orifices were pierced in the smooth pipe, used in 
experiment, for the pressure measurement. There are a lot of such examples in papers and 
monographs [3, 4 and 5]. 

Final remarks 

The expressions, adduced here, have the key nature; therefore their deduction is accomplished in 
one-dimensional stationary statement. At the same time, the results of computational 
experiments, that repeatedly realized, not yield to experimental results on regularity and 
precision. 

__________________________ 
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