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Structural analysis of strained and stressed state in axisymmetric solid body, 
elaborated by the author in his previous articles, allowed to elucidate 
mechanism of buckling of long rods under longitudinal compression and now, 
with due regard for specificity of a liquid motion in tube, to produce mechanism 
of transition of laminar flow into a turbulent. Thereby the author corroborates a 
correctness of the transition established by him in one of his previous article 
under “Euler – Poiseuille criterion” name. 
PACS: 01.55.+b; 46.32.+x;  47.10.+g; 47.15.Cb; 47.27.Lx; 47.32.-y; 47.40.Dc; 
47.60.+i; 47.85.Dh 

 
Introduction 
A question on mechanics of origin of turbulence in a fluid stream in straight cylindrical pipe is 
historically connected with problem on instability of laminar flow and one is considered as specific 
problems of hydromechanics at present. Experimental finding out of phenomenon in kind of 
transition of laminar flow of water in pipe to the turbulent is bound with names of G. Hagen (1839) 
and J. Poiseuille (1840), and the most careful experimental research of the question was carried out 
by O. Reynolds (1883). 
In constructional engineering, actuality of problem on stability came into being in ancient times in 
view of necessity of stanchions as supporting elements for roof in housing and cult construction. In 
middle of XVIII century L. Euler deduced in the first time a formula determining the critical 
quantity of longitudinal force compressing a straight long rod. Euler supposed that the rod axis 
curvature after its buckling corresponds to a sinusoid one-half period, and quantity of compressive 
force is directly proportional to the rod bending rigidity and inversely proportional to square of its 
length. The formula went down in gold fund of mechanics side by side with the lever rules, but the 
phenomenon nature of the instability was found more complicated and requires subsequent 
experimental and theoretical researches in connection with diversity of the rod forms, the bearing 
constructions and also under dynamical longitudinal loads. 
The author supposes to be rational to clear up of specificities of buckling as a process in elastic 
statement of problem, then in the elastic-plastic and only after that to consider a question on 
transition of laminar flow in straight pipe to the turbulent as the buckling process. 

Approach 
Experiments, carried out by English scientist E. Hodgkinson (1840), had corroborated correctness of 
Euler formula as applied to the rods with plane its ends. At the same time Hodgkinson had 
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experimentally found out that for two flexible rods, one of which has plane its ends and the other 
was made with convex-rounded its ends, the second one was elastically bent by the same 
longitudinal force when its length was decreased in half in comparison with the first of them [1] 
According to Euler formula such experimental result signifies 
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where p and r  signify the plane and convex-rounded ends correspondingly. 
Such unexpected result requires, in opinion of the given article author, elucidating of internal 
geometrical structure in the rod volume and also determining of rigidity in axial (longitudinal), hoop 
(transversal) directions and under bending in elements of the structure with taking into consideration 
of its interaction under longitudinal compressive force. 
Thus, we are considering cylindrical rod with its diameter D = 1, made from medium-carbon steel 
and its length no less than L > 15D (i.e. λ > 100). 
Conception of internal geometrical structure in cylindrical rod, introduced by the author, includes on 
initial stage in itself: a rod core, a rod shell and near-axial singular cylinder with its uncertainly 
small diameter. 

Fig.1, in its left side, shows consecutive division of the cylindrical rod cross-section area in half 
when the rod is loaded by longitudinal compressive force; at the same place there are showed helical 
trajectories 45° of one – right-handed - of two sets of principal stresses; the right side shows the 
same division of the same rod under action of torsion moment: in this case is added a boundary 
corresponding to equality of polar moments of inertia of the rod shell and core parts   Diameter of 

the core is equaled �� = � √2⁄ . Correspondingly to it the cross-section areas of core and shell equal 
to each other and thereby ensure equality in its axial rigidity. 
Moment of inertia under bending of the core 

�� =  � �� √2⁄ �
�

64 = 0.25� �� 64,⁄�   
and moment of inertia of the shell 

�� = ��� [1 − (�� �⁄ )�] 64⁄ = 0.75� �� 64,⁄  
i.e.  

�� ��⁄ = 3 1.⁄  

So, it should be supposed that the shell geometrical structure consists of three annular layers 
having the same quantity of its moment of inertia under bending equal 0.25� �� 64.⁄  
Moment of inertia of the shell external layer 

��� = ��� [1 − 0.9306�] 64⁄ = 0.25� �� 64;⁄  

moment of inertia of the shell middle layer 
 

��� = ��� [1 − 0.841�] 64⁄ − 0.25� �� 64⁄ = 0.25� �� 64.⁄  

Thus, full internal geometrical structure of considered cylindrical rod contains in itself: 
- core with its diameter �� = 0.7071�; 
- shell consisting of three annular layers: �� ��� =⁄  0.7071/0.841;  
  ��� �� =⁄  0.841/0.9306; 
                                                                              �� �   =⁄  0.9306 1.000⁄ ; 
- near-axial singular cylinder. 
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Thickness and relative hoop rigidity of the shell annular layers 

����= (0.841 – 0.7071)·D/2 =   0.067D  ~ 1.00; 
���= (0.9306 – 0.841)·D/2 =   0.045D  ~ 0.67; 
����= (1.0000 – 0.9306)·D/2 = 0.035D ~ 0.52. 

Relative area of cross-section of these layers and correspondingly its axial rigidity  

                                                 ��  ~ 0.7071� ~                   0.5�� ~     1.0; 
��� ~ (0.841� – 0.7071�) ~ 0.207�� ~ 0.414; 
�� ~ (0.9306� – 0.841�) ~ 0.159�� ~ 0.318; 
��� ~ (1.000� – 0.9306�) ~ 0.134�� ~ 0.268. 

Thus a using of notion on internal geometrical structure in volume of cylindrical rod from 
polycrystallic statistically isotropic material has allowed elucidating distribution of bending, axial 
and hoop rigidity as factors of three-dimensional resistance of straight rod to longitudinal 
compressive load. 
The three-dimensional state of the rod with a ball and socket bearing of its ends is stipulated by field 
of internal forces in kind of two orthogonal each other sets of helical lines 45° - dextrorse and 
sinistrorse – as trajectories of principal stresses. 
Strictly symmetrical realization of the experiment not allows foretelling in what side the bending 
will be occurred; but we know at advance that the bending will be flat; we know also that the bent 
axis of the rod will be follow half-period sinusoid; and now we know that the flat line is a profile of 
half-coil of the helical lines as trajectories of the field of internal forces, determining existence of 
phenomenon under name buckling. The force field stipulates existence on the rod convex side 
tensile stresses not only in longitudinal direction but also in transversal – hoop direction; 
correspondingly on the rod concave side compressive stresses are acting not only in longitudinal 
direction but also in hoop direction. Symmetricity of action of the hoop stresses relative to the rod 
bending plane stipulates existence in every of two halves its cross-section a moment of torsional 
forces – equal in its quantity and directed in opposition sides: from the rod convex side to its 
concave side, i.e. pair of moments reflected by the rod bending plane as mirror. 
Using the above-described approach, we can for example compare stability of two the same tubular 
rods at two variants of its loading: 
- longitudinal force is immediately applied to the rod flat ends; 
- longitudinal force is applied to two pistons compressing fluid in the rod cavity at lack of friction. 
We suppose a ball and socket joint as a bearing for the first rod ends and for the pistons of the 

second rod. We also suppose a ratio of diameters �� = � √2⁄  of these rods that ensures equality of 
the cross-section areas of the rod shell and cavity in it. 
In the first of these two variants, an answer is obvious: a quantity of critical force for such tubular 
rod is three quarters of that quantity for the same but solid rod. 
In the second variant, tubular rod is a heavy-walled cylinder loaded with internal pressure of a fluid. 
G. Lame’s (1833) formulas determine hoop tensile stresses on internal surface of the cylinder 

��
� =

1 + �� ��⁄

1 − �� ��⁄
� =

1 + 0.5

1 − 0.5
� = 3� 

and on its external surface 



4 
 

��
� =

2 · �� ��⁄
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2 · 0.5

1 − 0.5
� = 2�. 

 

Relative decrease in hoop tensile stresses is 0.67. At the same time the above-determined relative 
decrease in hoop rigidity of the rod shell layers is 1; 0.67; 0.52. In that way these hoop tensile 
stresses overcome elastic resistance of the shell annular layers more than three times and ensure, 
with taking into consideration of Poisson’s coefficient μ = 0.3, axial elastic shortening of the tubular 
rod, corresponding to its buckling by Euler. 
Quantity of relative elastic shortening of flexible cylindrical rod with compact cross-section, 
corresponding to critical force by Euler,  
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is decreased by hyperbolic dependence as the rod relative length, expressed by it diameter, is 
increased; maximum quantity as applied to medium-carbon steel is 
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= 0.0039 ÷ 0.0027. 

Quantity of relative elastic shortening of flexible tubular rod with �� = � √2⁄ , corresponding to 
critical force by Euler, 
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On the whole numerous well-knowing experimental and theoretical researches and adduced here 
example of three-dimensional analysis of rod stressed state are evidence to that the Euler’s formula 
is correct as applied to flexible massive and tubular rods with flat ends. 
At the same time, in order to elucidate a cause of Hodgkinson’s unexpected result, on the author’s 
view, it should be considered the buckling phenomenon as a physical process concluding in it 
subsequently stages of latent origin, development and suddenly observed result in kind of bending of 
straight rod under longitudinal compressive force. Especial role of near-axial singular cylinder in the 
process is stipulated by a number of factors: 
- just the cylinder immediately undergoes action of external longitudinal compressive force; 
- diameter and area of contact of the cylinder with external longitudinal compressive force are 
neglected small in comparison with the rod cross-section diameter; 
- as element of internal geometrical structure, the cylinder has indeterminately-small area of its 
cross-section and correspondingly indeterminately-small its moment of inertia under bending; 
- the cylinder is called by a singular since one can increase its flexibility up to endlessness when 
radius of inertia of it cross-section is decreased up to zero. 
Combination of these factors results to that an action of compressive force onto a rod with convex- 
rounded ends is accompanied by consecutive passing ahead in compression of central – singular – 
cylinder, then in compression of the rod core: from central part to periphery of its cross-section, and 
after that the compression, consequently decreasing, spreads onto layers of the rod shell part. Role 
of singular cylinder as an exciter of the rod buckling is in that one itself and adjoined to it thin layers 
of the rod core have been found in a state corresponding to its buckling under action of already not 
great axial compressive load. Axisymmetricity of such state is held out by bending rigidity of the 
rod shell layers. This state of possible balance of the rod can be disturbed by slightest 
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asymmetricity, and then problem on longitudinal bending gives place to problem on cross bending: 
very small lateral force in middle of the rod length creates a bending moment with arm equal half 
length of the rod. A quantity of the bending moment is quite sufficiently for visible bending of the 
rod and for   subsequent return it in initial straight state after taking down of longitudinal 
compressive force. Just in that very case a quantity of longitudinal compressive force, applied to the 
rod, equal a quarter of force which one is necessary for buckling of the same rod with flat ends. It is 
precisely this fact that explains that is why Hodgkinson had to halve the rod length. In contrast to it 
a loading of cylindrical rod with flat ends is going on synchronously in both the rod core and shell as 
well central singular cylinder, and resistance of the rod to longitudinal compressive force is 
determined by summary axial rigidity of all elements of the rod cross-section in accordance with 
Euler’s statement of the problem. 

Fig.2 shows three flexible cylindrical rods of the same length loaded with longitudinal compressive 
force: Euler’s critical force for the left rod is a sum of the same four forces correspondingly to 
summary bending rigidity of the rod core and three layers of its shell; Euler’s critical force for 
middle rod is a quarter as its cross-section is restricted by the rod core; a buckling of the right rod is 
also going on at a quarter of Euler’s force because of its convexo-rounded ends.      Specific 
influence of the singular cylinder onto the rod stressed state and its load-carrying ability we found 
also in tension of cylindrical specimen from medium-carbon steel: in this case an initial transversal 
crack appears just in very central part of its cross-section; maximum quantity of radial compression 
in cylindrical rod under torsion moment is reached at the rod axis, and forced elasto-plastic 
elongation of singular cylinder and the rod core together with it, stipulated by the radial 
compression, arouses a loading of the rod shell with longitudinal tension up to its fracture. Thus our 
method of the stressed and strained state analysis not allows finding out positive influence of central 
singular cylinder and adjoined to it layers of the rod core onto its load-carrying ability under axial 
compression, tension and torsion. We can corroborate physical adequacy of such conclusion by 
means of comparison with similar elements in Nature’s engineering: 
- stem of herbs has layered fibrous hollow structure; stem of rye, wild cane, bamboo has d/D = 0.9, 
L/D = 150 and more; internal cavity of herbs can be filled with nutrient solution; 
- trunk of trees has annular layered grained structure with consecutive diminution in a wood density 
to the cross-section center; 
- birds: crane, heron, flamingo has tubular legs d/D = 0.77, L/D = 20; 
- the man and animals skeleton contains two kinds of bones: the tubular d/D = 0.65, L/D = 8, 
partially filled with oriented or isotropic osseous latticed or porous structure, and sandwich shells 
consisting of two thin-walled shells and porous structure in closed space between its. 

Fig.3 offers a photo of a shin-bone in longitudinal (vertical) section: we can see tubular middle part 
of the bone and two its end parts filled with isotropic osseous porous structure; the photo is adopted 
from An Atlas of Man Anatomy [2].  

Fig.4 offers another photo, from the same book, of a thigh-bone in hip articulation in vertical 
section: we can see tubular part of the bone and its end part filled with oriented osseous latticed 
structure; at the same place we can also see a pelvic bone in kind of sandwich shell filled with 
isotropic osseous porous structure.   
Absolute lack of central singular cylinder in adduced examples should be considered as one of 
principle in Nature’s engineering which one not only corroborates above our conclusion, but also 
determines hollow rods, shafts, axles, columns, springs as rational elements of machines and 
mechanisms as well building constructions having both high short-term strength and durability 
under action of axial tensioning and compressive forces and also torsion moment. 
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Only now we have necessary physically adequate prerequisites for reconsidering of a question on 
the laminar flow instability in straight cylindrical pipe, solved by the author in one of his previous 
articles [3]. 
Three following theses: 
- volume of statistically-isotropic solid rod with cross-section in kind of circle or regular polygon 
and fluid stream in straight pipe with the same cross-section contains in both these cases internal 
layered-annular structure, determined by its axial, bending and torsion rigidity; 
- principal stresses in the solid rod and principal motive forces in the fluid stream are acting along 
trajectories of two sets of helical 45° lines; balanced in its quantity, these forces ensure forward 
motion of the stream in pipe;  
- curves from conic sections are base for graphical-analytical solution of problems on a solid rod 
deformation and a fluid stream motion in pipe; 
in combination with fundamental heritage, obtained by penetrating mind of our precursors, open a 
possibility for physically adequate and mathematically correct statement and solution of problems in 
mechanics of solid body and fluid medium. 
   
Fig.5 shows that the stationary laminar water stream in straight cylindrical pipe can be presented in 

kind of a rod with its length L, diameter D and its core �� = � √2⁄ ; the rod being under action of 
axial and radial compressive forces stipulated by static pressure, and at the same time one is moved 
rectilinearly and uniformly, i.e. with constant velocity similarly to inertial movement. 
 
Fig.6, in its upper part, offers classical distribution of the friction forces and velocity along the pipe 
radius in the laminar stream and at the same time one shows that paraboloid of rotation, formed by 
parabola in second power, divides a volume of circumscribed around it cylinder in radial and 
longitudinal directions onto four parts equal each other as the stream cross-section areas of its core 
and shell parts as well as two halves along the stream axis are equal each other. This is geometrical 
explanation to that the mean (in flow rate) quantity of the stream velocity is half maximum its 
velocity (in the stream axis). 
The lower diagram shows rectilinear motion of the stream in straight pipe as a result of action of a 
field of motive forces directed along trajectories of two sets of helical lines inclined under 45° to the 
stream axis. In straight pipe, these forces balance each other and ones together ensure forward 
movement only, and correspondingly to it we can write expression for axial velocity head  

���� = �
���

�
=

�

�
[(�̅�� sin 45°)� + (�̅�� cos 45°)�],   

where �̅�� = �̅�� are velocities along the left- and right-handed helical trajectories correspondingly.  
But in the bent pipe, these two sets of helical trajectories are separated against each other with a 
forming of pair-helical (pair-spiral) flow; such phenomenon quite similar to above-described 
stressed state of bent solid cylindrical rod at its buckling. At the same place, it is showed two 

cylindrical boundaries: one of these �� = � √2⁄  divides the stream cross-section area in half and the 

other ��� = � √2
�⁄  ensures equality in polar moments of inertia of the stream cross-section core and 

shell parts; as applied to well-known “bath effect” and similar phenomena, a thickness of the stream 
circular shell, determined by the second boundary, determines, in one’s turn, quantity of revolving 
jets which ones form rotatory movement of water inflowing to a bath outlet. Near-axial singular 
cylinder with its uncertainly small diameter is also showed in both diagrams of the fig., since 
Reynolds in one of his remarkable experiments not only has distinctly found out such element of a 
water stream in cylindrical tube, but he had also disclosed role of the flow element as an exciter of 
transition of the water flow from laminar to turbulent form. 
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Fig.7 offers three examples of rectilinear plano-symmetrical water flow: along horizontal flat plate, 
in open straight channel and in straight pipe with partially filled its cross-section. Feature in the first 
of these examples is in that the flow is the same both - upper and lower - surfaces of the plate. 
General property of all three these examples is in that decrease of velocity head in axial direction, 
caused by friction, arouses equal to it by quantity pair of transversal velocity heads, directed in both 
sides away from the plane of symmetry; using Darcy-Weisbach formula, we obtain 

�
��

�

�
= �

�

�
∙ �

��
�

�
 , 

i.e. loss of velocity head in forward flow is compensated by the transversal velocity head on both 
sides from the plane of symmetry. This pair of transversal velocity heads flattens water jet with its 
initial circular cross-section on flat surface of the plate, and one forms pair-spiral flow in above open 
channel and the pipe. Straight pipe full filled with water and with its cross-section in kind of 
equilateral triangle has three planes of symmetry passing through its apices, and therefore water 
stream in the pipe contains three pair-spiral components in its forward motion. 

Fig.8 offers conditionally a fragment of the water stream in a pipe with circular cross-section. 
Longitudinal section of the fragment contains, in squared frame, two parabolas: in the second power 
(black line) and in the fourth power (red line), constructed by pieces of straight line; the first of these 
parabolas is a profile of the stream velocity in its laminar flow, and the second parabola is a profile 
of the stream velocity head; in other words, the velocity profile is a function of the stream radius  in 
second power, and the velocity head profile is a function of the stream radius in fourth power. Static 
pressure is showed in kind of spheres with its same radius, placed along the stream cross-section 
radius. It should be noted, that a coordinate system for the stream is set by the pipe internal 
cylindrical surface. In the system, maximum quantity of a friction force at the pipe internal surface 
is decreased uniformly up to zero at the stream axis, i.e. where is placed singular cylinder; the 
cylinder closes by itself the stream cross-section area and transforms the friction resistance into 
static pressure, directed radially from the stream axis to the pipe wall, and one is remained by equal 
in both radial and axial directions in the given cross-section of the stream. In contrast to it, the 
velocity head is remained by equal along the stream forward flow, but one is decreased in radial 
direction from maximum quantity at the stream axis to zero at the pipe wall in the given section.  
The simplest device of H. Pitot (1732) is the invention of genius, since the device has opened a 
possibility of measuring of both the so called full velocity head, as a sum of axial velocity head and 
static pressure, and simultaneously static pressure separately. Since this sum is vectorial, we must 
add geometrically the same static pressure, acting also and in radial direction, to the sum; just 
namely such sum determines physically adequately the stream full head vector with its components 
in kind of the summary axial velocity and static head vector and also radial, static, head vector. In its 
nature, as foreign body in fluid stream, Pitot device cannot measure the stream full head vector.  
The water stream in pipe is not only geometrically restricted by cylindrical wall, but also, in its 
forward motion, one interacts with the wall, and therefore one is pierced through by axisymmetric 
field of the lengthwise interlayered forces of the fluid internal friction; these two factors stipulate 
laminar flow of the stream. 
Reverting to diagram in the figure, we see that, in contrast to the friction forces, the full head vector 
in singular cylinder is deflected from the stream axis, and one acts along the generating line of conic 
surface; this deflection angle is increased correspondingly to a decrease of velocity head, as axial 
component of the full head vector, in radial direction to the pipe wall. Forces of the full head vector 
are forming axisymmetric field, piercing through the water stream. 
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One of these two, a field of the friction forces, is a primary factor determining motion of a fluid 
stream as such. The field determines completely existence of laminar flow at comparatively low 
velocity, and one can, in perfect experiment, remain at very high velocities of a stream flow in pipe. 
A field of the full head forces is secondary factor, as a consequence of a fluid motion, formed by the 
friction forces. The field is very intensively increasing its energy as a stream velocity is increased 
Both these fields – of a friction and full head forces – are forming and operating the stream flow in 
pipe, and at the same time themselves remain immovable relative to every section of pipe. A state of 
rectilinear and uniform steady motion of stream is the state of relative motion; such state is 
equivalent to immobility in itself. Pressure drop, applied to the pipe ends, is axial force compressing 
the stream in kind of sufficiently long cylindrical column. Under the circumstances, just namely the 
field of the full head forces, which possesses: 
- intensity proportional to the fourth power of the stream radius; 
- central singular cylinder as exciter, very sensitive to slightest imperfections in the flow system; 
determines a transition from laminar to turbulent flow as phenomenon of buckling in sufficiently 
long cylindrical rod above-described. 
By his experiment, O. Reynolds has showed an origin of turbulence in kind of transition of central 
tinctured jet to its motion along helical line on surface of invisible cone.    

Fig.9 shows, in black lines, diagram by J. Nikuradse (1932), adopted from Schlichting’s book [4]. 
The diagram offers six profiles of velocity in a turbulent water flow through a smooth-walled 
cylindrical pipe, which ones correspond to the power dependence with its power in range from the 
sixth to the tenth power of the stream radius. At the same place, author of the given article has 
adduced a velocity profile of laminar stream in kind of parabola in the second power. A mean 
velocity, determined by a flow rate, in laminar stream corresponds to the pipe radius: 

 �� = � √2⁄ = 0.707�, i.e. on distance from the pipe wall 0.293R; and the mean velocity of 
turbulent stream corresponds to the pipe radius 

�� = �� √2⁄ + � √2
�

⁄ � 2⁄ = 0.774�, 

i.e. on distance from the pipe wall 0.226R; in other words, the mean velocity radius of turbulent 
stream equal exactly to a half sum of radii dividing the stream cross-section into two parts: with 
equal quantity of its area and also with equal quantity of its polar moments of inertia. A quantity of a 
mean velocity of turbulent stream exceeds that quantity of laminar stream: �̅� �̅�⁄ = 1.75. The author 
supposes it to be rational to call the laminar flow in the limits up to Reynolds number 2000…2300 
by ordinary laminar flow and the same flow behind these limits to call by a superlaminar, since such 
flow can be realized under special conditions only. 

Fig.10 shows, in black line, a parabola in the second power – in the limits y = �� = 1 – as profile of 
velocity of water stream in cylindrical pipe, corresponding to ordinary developed laminar flow; the 
same parabola, symmetrically reflected by diagonal of square, is found in a number of parabolas, 
which ones determine profiles of velocity in developed turbulent stream at its power from 6 to 10 in 
exact conformity with results of J. Nikuradse’s experiments [4, fig.20.2]. In a case of superlaminar 
flow, its velocity profile turns out elongated y = �� ≫ 1, as it is showed in fig.253 in [6].                
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Fig.3: the photo of shin-bone is adopted from [2]  
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Fig.4: the photo of hip articulation is adopted from [2]  
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Fig.6 
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Fig.8: 

 

 

 

 

 

  

Y

X 

  

  

  

  

  
  
    
  

  

  

  

  

  

  

  

  

  

  

    

  
  

  

  

pst 

pφ 

  

φmin 

pdyn 

  
  

Z

  

  

 

  

pφ = [(pst)
2 + (psa)

2 
]
0.5 pst + pdyn = psa 

φmin  =  φr=0 
φ = arctan pst  / psa 

 

pdyn (r) = vario 

pst (r) = const 

pst ( l ) = vario 

pdyn ( l ) = const φmax = φR = 90° 

R ≥ r ≥ 0 

R

v ~ f (r2) 

pdyn ~ f (r
4) 

 



18 
 

 

Fig.9 
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Fig.10 
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